Measurements and simulation of ionospheric scattering on VHF and UHF radar signals: Channel scattering function
نویسندگان
چکیده
[1] The design and operation of transionospheric VHF and UHF radars requires knowledge of amplitude and phase scintillation due to ionospheric scattering. Phase coherence is of particular importance where long coherent integration periods and large bandwidths are required. A thin phase screen, parabolic equation based, Trans-Ionospheric Radio Propagation Simulator (TIRPS) is described. Modeled channel scattering functions (CSFs) are compared to experimental VHF and UHF data derived from the Advanced Research Projects Agency Long-range Tracking and Instrumentation Radar on Kwajalein Island (9.4 N, 166.8 E). TIRPS quantitatively reproduces the experimental results, including the quasi-parabolic profile observed in the measured CSFs under strong turbulence conditions. Variations in the simulated CSF with ionospheric phase screen parameters are also presented. Under conditions of high integrated strength of turbulence (CkL), a low phase spectral index (p = 1), indicating relatively dense small-scale irregularities, produces pronounced range spreading. Conversely, when the spectral index is high (p = 4), indicative of strong focusing/defocusing by large-scale irregularities, there is increased Doppler spreading and, when the outer scale of irregularities is large, a greater likelihood of asymmetry of the CSF about the zero Doppler axis.
منابع مشابه
A technique for calculating meteor plasma density and meteoroid mass from radar head echo scattering
Large-aperture radars detect the high-density plasma that forms in the vicinity of a meteoroid and moves approximately at its velocity; reflections from these plasmas are called head echoes. To determine the head plasma density and configuration, we model the interaction of a radar wave with the plasma without using assumptions about plasma density. This paper presents a scattering method that ...
متن کاملSimultaneous meteor echo observations by largeaperture VHF and UHF radars
We report simultaneous meteor echo observations using the Arecibo 430MHz and 46.8-MHz radars. Using identical data-taking and meteor selection criteria, 1868 and 367 meteors were found in the 430-MHz and 46.8-MHz beams, respectively, while 145 were found in both beams during the 7 hours of observation. Of the 367 VHF echoes, there were only 10 trail echoes, while the rest were head echoes, whic...
متن کاملIdentification of scintillation signatures on GPS signals originating from plasma structures detected with EISCAT incoherent scatter radar along the same line of sight
Ionospheric scintillation originates from the scattering of electromagnetic waves through spatial gradients in the plasma density distribution, drifting across a given propagation direction. Ionospheric scintillation represents a disruptive manifestation of adverse space weather conditions through degradation of the reliability and continuity of satellite telecommunication and navigation system...
متن کاملبررسی عملکرد پروبهای UHF در آشکارسازی تخلیه جزئی در ترانسفورماتورهای فشار قوی
Recently, UHF partial discharge (PD) detection on power transformers attracts lots of attentions. For the transformers already installed in power network, the UHF signals can be captured only by UHF probes installed through oil drain valve. Although UHF probes are commercially produced, there are a lot of missing information on characteristics and features of these probes for PD detection. In t...
متن کاملHF , VHF , and UHF Systems and Technology
A wide variety of unique systems and components inhabits the HF, VHF, and UHF bands. Many communication systems (ionospheric, meteor-burst, and troposcatter) provide beyond-line-of-sight coverage and operate independently of external infrastructure. Broadcasting and over-the-horizon radar also operate in these bands. Magnetic-resonance imaging uses HF/VHF signals to see the interior of a human ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009